Pervasive under-dominance in gene expression underlying emergent growth trajectories in Arabidopsis thaliana hybrids

Author:

Yuan Wei,Beitel Fiona,Srikant Thanvi,Bezrukov Ilja,Schäfer Sabine,Kraft Robin,Weigel DetlefORCID

Abstract

Abstract Background Complex traits, such as growth and fitness, are typically controlled by a very large number of variants, which can interact in both additive and non-additive fashion. In an attempt to gauge the relative importance of both types of genetic interactions, we turn to hybrids, which provide a facile means for creating many novel allele combinations. Results We focus on the interaction between alleles of the same locus, i.e., dominance, and perform a transcriptomic study involving 141 random crosses between different accessions of the plant model species Arabidopsis thaliana. Additivity is rare, consistently observed for only about 300 genes enriched for roles in stress response and cell death. Regulatory rare-allele burden affects the expression level of these genes but does not correlate with F1 rosette size. Non-additive, dominant gene expression in F1 hybrids is much more common, with the vast majority of genes (over 90%) being expressed below the parental average. Unlike in the additive genes, regulatory rare-allele burden in the dominant gene set is strongly correlated with F1 rosette size, even though it only mildly covaries with the expression level of these genes. Conclusions Our study underscores under-dominance as the predominant gene action associated with emergence of rosette growth trajectories in the A. thaliana hybrid model. Our work lays the foundation for understanding molecular mechanisms and evolutionary forces that lead to dominance complementation of rare regulatory alleles.

Funder

Max Planck Institute for Biology Tübingen

Publisher

Springer Science and Business Media LLC

Reference69 articles.

1. Falconer DS, Mackay TFC. Introduction to quantitative genetics. Essex: Longman; 1996.

2. Braendle C, Heyland A, Flatt T. Integrating mechanistic and evolutionary analysis of life history variation. Mechanisms of life history evolution. The genetics and physiology of life history traits and trade-offs. New York: Oxford University Press; 2011. p. 3–10.

3. Varona L, Legarra A, Toro MA, Vitezica ZG. Non-additive effects in genomic selection. Front Genet. 2018;9:78.

4. Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009;10:565–77.

5. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012;109:1193–8.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3