Establishing and validation of the VBV score for assessing Lung ground-glass nodules based on high-resolution computed tomography

Author:

Zhou Yuwei,Cao Xiaoqing,Gu Haiyong,Gao Shenhu,Wu Yuxuan,Li Haoyang,Xiong Bing,Dong Haiyang,Lv Yan,Yang Rong,Wu Yihe

Abstract

Abstract Background The widespread utilization of chest High-resolution Computed Tomography (HRCT) has prompted detection of pulmonary ground-glass nodules (GGNs) in otherwise asymptomatic individuals. We aimed to establish a simple clinical risk score model for assessing GGNs based on HRCT. Methods We retrospectively analyzed 574 GGNs in 574 patients undergoing HOOK-WIRE puncture and pulmonary nodule surgery from January 2014 to November 2018. Clinical characteristics and imaging features of the GGNs were assessed. We analyzed the differences between malignant and benign nodules using binary logistic regression analysis and constructed a simple risk score model, the VBV Score, for predicting the malignancy status of GGNs. Then, we validated this model via other 1200 GGNs in 1041 patients collected from three independent clinical centers in 2022. Results For the exploratory phase of this study, out of the 574 GGNs, 481 were malignant and 93 were benign. Vacuole sign, air bronchogram, and intra-nodular vessel sign were important indicators of malignancy in GGNs. Then, we derived a VBV Score = vacuole sign + air bronchogram + intra-nodular vessel sign, to predict the malignancy of GGNs, with a sensitivity, specificity, and accuracy of 95.6%, 80.6%, and 93.2%, respectively. We also validated it on other 1200 GGNs, with a sensitivity, specificity, and accuracy of 96.0%, 82.6%, and 95.0%, respectively. Conclusions Vacuole sign, air bronchogram, and intra-nodular vessel sign were important indicators of malignancy in GGNs. VBV Score showed good sensitivity, specificity, and accuracy for differentiating benign and malignant pulmonary GGNs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3