Navigating the ethical landscape of artificial intelligence in radiography: a cross-sectional study of radiographers’ perspectives

Author:

Aldhafeeri Faten Mane

Abstract

Abstract Background The integration of artificial intelligence (AI) in radiography presents transformative opportunities for diagnostic imaging and introduces complex ethical considerations. The aim of this cross-sectional study was to explore radiographers’ perspectives on the ethical implications of AI in their field and identify key concerns and potential strategies for addressing them. Methods A structured questionnaire was distributed to a diverse group of radiographers in Saudi Arabia. The questionnaire included items on ethical concerns related to AI, the perceived impact on clinical practice, and suggestions for ethical AI integration in radiography. The data were analyzed using quantitative and qualitative methods to capture a broad range of perspectives. Results Three hundred eighty-eight radiographers responded and had varying levels of experience and specializations. Most (44.8%) participants were unfamiliar with the integration of AI into radiography. Approximately 32.9% of radiographers expressed uncertainty regarding the importance of transparency and explanatory capabilities in the AI systems used in radiology. Many (36.9%) participants indicated that they believed that AI systems used in radiology should be transparent and provide justifications for their decision-making procedures. A significant preponderance (44%) of respondents agreed that implementing AI in radiology may increase ethical dilemmas. However, 27.8%expressed uncertainty in recognizing and understanding the potential ethical issues that could arise from integrating AI in radiology. Of the respondents, 41.5% stated that the use of AI in radiology required establishing specific ethical guidelines. However, a significant percentage (28.9%) expressed the opposite opinion, arguing that utilizing AI in radiology does not require adherence to ethical standards. In contrast to the 46.6% of respondents voicing concerns about patient privacy over AI implementation, 41.5% of respondents did not have any such apprehensions. Conclusions This study revealed a complex ethical landscape in the integration of AI in radiography, characterized by enthusiasm and apprehension among professionals. It underscores the necessity for ethical frameworks, education, and policy development to guide the implementation of AI in radiography. These findings contribute to the ongoing discourse on AI in medical imaging and provide insights that can inform policymakers, educators, and practitioners in navigating the ethical challenges of AI adoption in healthcare.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3