Identification of multiple isoforms of glucocorticoid receptor in nasal polyps of patients with chronic rhinosinusitis

Author:

Shao Shan,Wang Yue,Zhao Yan,Xu Yuan,Wang Tie,Du Kun,Bao Shiping,Wang XiangdongORCID,Zhang Luo

Abstract

Abstract Background The conventional belief that glucocorticosteroid (GC) acts through a single brand glucocorticoid receptor (GR)α protein has changed dramatically with the discovery of multiple GR isoforms. We aimed to evaluate whether multiple GR protein isoforms are expressed in chronic rhinosinusitis with nasal polyps (CRSwNP) and whether GR protein isoform expression profiles differ between different endotypes of CRSwNP. Methods Thirty-eight patients with CRSwNP and ten healthy volunteers were included. The protein expression of multiple GR isoforms in nasal polyps (NPs) tissue and control mucosae was examined by western blot analysis with different GR antibodies. Results Five bands, including three bands for known proteins (GRα-A/B, GRα-C, and GRα-D) and two bands for unidentified proteins at 67 kilodaltons (kDa) and 60 kDa, were identified with both total GR antibody (PA1-511A) and GRα-specific antibody (PA1-516). GRα-D intensity, which was abundant in nasal mucosa, was significantly increased in the CRSwNP group and was especially elevated in the noneosinophilic CRSwNP (NE-CRSwNP) group (PA1-511A: P < 0.001 and P = 0.0018; PA1-516: P < 0.003 and P = 0.006, respectively). Additionally, the intensities of the newly recognized 67 kDa and 60 kDa bands were much greater in the NE-CRSwNP subgroup than in the eosinophilic CRSwNP (E-CRSwNP) subgroup; in the E-CRSwNP subgroup, the median intensities were even lower than those in the control group. Conclusions This study provides evidence that nasal tissues express multiple GR protein isoforms. GR protein isoforms presented disease and tissue-specific expression profiles that differed between the CRSwNP and control groups and between the E-CRSwNP and NE-CRSwNP subgroups. Graphical abstract

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

program for the Changjiang scholars and innovative research team

Beijing Bai-Qian-Wan talent project

Public Welfare Development and Reform Pilot Project

National Science and Technology Major Project

CAMS Innovation Fund for Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Otorhinolaryngology,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3