A strategy to identify event specific hospitalizations in large health claims databases

Author:

Lambert Joshua,Sandhu Harpal,Kean Emily,Xavier Teenu,Brokman Aviv,Steckler Zachary,Park Lee,Stromberg Arnold

Abstract

Abstract Background Health insurance claims data offer a unique opportunity to study disease distribution on a large scale. Challenges arise in the process of accurately analyzing these raw data. One important challenge to overcome is the accurate classification of study outcomes. For example, using claims data, there is no clear way of classifying hospitalizations due to a specific event. This is because of the inherent disjointedness and lack of context that typically come with raw claims data. Methods In this paper, we propose a framework for classifying hospitalizations due to a specific event. We then tested this framework in a private health insurance claims database (Symphony) with approximately 4 million US adults who tested positive with COVID-19 between March and December 2020. Our claims specific COVID-19 related hospitalizations proportion is then compared to nationally reported rates from the Centers for Disease Control by age. Results Across all ages (18 +) the total percentage of Symphony patients who met our definition of hospitalized due to COVID-19 was 7.3% which was similar to the CDC’s estimate of 7.5%. By age group, defined by the CDC, our estimates vs. the CDC’s estimates were 18–49: 2.7% vs. 3%, 50–64: 8.2% vs. 9.2%, and 65 + : 14.6% vs. 28.1%. Conclusions The proposed methodology is a rigorous way to define event specific hospitalizations in claims data. This methodology can be extended to many different types of events and used on a variety of different types of claims databases.

Funder

NIH NLM

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

Reference35 articles.

1. Konrad R, Zhang W, Bjarndóttir M, Proaño R. Key considerations when using health insurance claims data in advanced data analyses: an experience report. Health Syst (Basingstoke). 2019;9(4):317–25.

2. Brixner D, Rubin DT, Mease P, Mittal M, Liu H, Davis M, et al. Patient support program increased medication adherence with lower total health care costs despite increased drug spending. J Manag Care Spec Pharm. 2019;25(7):770–9.

3. Ash A, Porell F, Gruenberg L, Sawitz E, Beiser A. Adjusting Medicare capitation payments using prior hospitalization data. Health Care Financ Rev. 1989;10(4):17–29.

4. Biskupiak J, Oderda G, Brixner D, Tang D, Zacker C, Dalal AA. Quantification of economic impact of drug wastage in oral oncology medications: comparison of 3 methods using palbociclib and ribociclib in advanced or metastatic breast cancer. J Manag Care Spec Pharm. 2019;25(8):859–66.

5. Chan SS, Chappel AR, Maddox KEJ, Hoover KW, Huang Y-LA, Zhu W, et al. Pre-exposure prophylaxis for preventing acquisition of HIV: A cross-sectional study of patients, prescribers, uptake, and spending in the United States, 2015–2016. PLoS Med. 2020;17(4):e1003072.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3