WISP1 induces ovarian cancer via the IGF1/αvβ3/Wnt axis

Author:

Li Yan,Wang Fangfang,Liu Tianyi,Lv Nan,Yuan Xiaolei,Li Peiling

Abstract

Abstract Background This study intended to clarify the mechanisms by which WISP1-mediated IGF1/αvβ3/Wnt axis might affect the progression of ovarian cancer. Methods Bioinformatics analysis was implemented for pinpointing expression of IGF1 and WISP1 which was verified through expression determination in clinical tissue samples and cells. Next, gain- or loss-of-function experimentations were implemented for testing CAOV4 and SKOV3 cell biological processes. The interaction between WISP1 and IGF1 was verified by co-immunoprecipitation and the molecular mechanism was analyzed. Finally, ovarian cancer nude mouse models were prepared to unveil the in vivo effects of WISP1/IGF1. Results IGF1 and WISP1 expression was elevated in ovarian cancer tissues and cells, which shared correlation with poor prognosis of ovarian cancer sufferers. Elevated IGF1 induced malignant properties of ovarian cancer cells through activation of PI3K-Akt and Wnt signaling pathway. WISP1 was positively correlated with IGF1. WISP1 could enhance the interaction between IGF1 and αvβ3 to induce epithelial-mesenchymal transition. In vivo experiments also confirmed that upregulated WISP1/IGF1 induced tumorigenesis and metastasis of ovarian cancer cells. Conclusion In conclusion, WISP1 can facilitate ovarian cancer by activating Wnt via the interaction between IGF1 and αvβ3.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

Reference32 articles.

1. Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48(7):3816–31.

2. Cao S, Li N, Liao X. miR-362-3p acts as a tumor suppressor by targeting SERBP1 in ovarian cancer. J Ovarian Res. 2021;14(1):23.

3. Yang L, Tian S, Chen Y, Miao C, Zhao Y, Wang R, et al. Ferroptosis-related gene model to predict overall survival of ovarian carcinoma. J Oncol. 2021;2021:6687391.

4. Zhu J, Zheng Y, Zhang H, Liu Y, Sun H, Zhang P. Galectin-1 induces metastasis and epithelial-mesenchymal transition (EMT) in human ovarian cancer cells via activation of the MAPK JNK/p38 signalling pathway. Am J Transl Res. 2019;11(6):3862–78.

5. Liang H, Yu T, Han Y, Jiang H, Wang C, You T, et al. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer. 2018;17(1):119.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3