Identification of key genes and pathways related to cancer-associated fibroblasts in chemoresistance of ovarian cancer cells based on GEO and TCGA databases

Author:

Han Li,Guo Xiaojuan,Du Ruijuan,Guo Kelei,Qi Pei,Bian Hua

Abstract

Abstract Background Studies have revealed the implications of cancer-associated fibroblasts (CAFs) in tumor progression, metastasis, and treatment resistance. Here, in silico analyses were performed to reveal the key genes and pathways by which CAFs affected chemoresistance in ovarian cancer. Methods Candidate genes were obtained from the intersected differentially expressed genes in ovarian cancer, ovarian cancer chemoresistance, and ovarian CAF-related microarrays and chemoresistance-related genes from GeneCards databases. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis were employed to identify the pathways engaged in ovarian cancer chemoresistance and ovarian CAF-related pathways. The top genes with high Degree in the protein-protein interaction network were intersected with the top genes enriched in the key pathways, followed by correlation analyses between key genes and chemotherapeutic response. The expression profiles of key genes were obtained from Human Protein Atlas database and TCGA-ovarian cancer data. Results p53, cell cycle, PI3K-Akt, and MAPK pathways were the key pathways related to the implication of CAFs in ovarian cancer chemoresistance. 276 candidate genes differentially expressed in CAFs were associated with ovarian cancer chemoresistance. MYC, IGF1, HRAS, CCND1, AKT1, RAC1, KDR, FGF2, FAS, and EGFR were enriched in the key chemoresistance-related ways. Furthermore, MYC, EGFR, CCND1 exhibited close association with chemotherapeutic response to platinum and showed a high expression in ovarian cancer tissues and platinum-resistant ovarian cancer cells. Conclusion The study suggests the key genes (MYC, EGFR, and CCND1) and pathways (p53, cell cycle, PI3K-Akt, and MAPK) responsible for the effect of CAFs on ovarian cancer chemoresistance.

Funder

Natural Science Foundation of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3