Amniotic fluid-derived exosomes attenuated fibrotic changes in POI rats through modulation of the TGF-β/Smads signaling pathway

Author:

Nazdikbin Yamchi Nahideh,Ahmadian Shahin,Mobarak Halimeh,Amjadi Farhad,Beheshti Rahim,Tamadon Amin,Rahbarghazi Reza,Mahdipour Mahdi

Abstract

AbstractIn the current study, we investigated the regenerative effects of amniotic fluid exosomes (AF-Exos) in a rat model for premature ovarian insufficiency (POI). POI is a condition characterized by a decrease in ovarian function that can lead to infertility. We induced POI by administering cyclophosphamide (CTX) for 15 consecutive days, and then transplanted AF-Exos directly into both ovarian tissues. Four weeks later, we measured the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2), and performed histopathological evaluations using H & E and Masson’s trichrome staining. We also monitored the expression of genes related to the TGF-β signaling pathway using real-time PCR and examined the fertility rate of POI rats after AF-Exos therapy. Histological analysis showed an increase in atretic follicles and a decrease in healthy follicle count after POI induction. Four weeks post-AF-Exos intervention, the healthy follicle count increased (p < 0.01) while the atretic follicle count decreased (p < 0.001). In parallel, the deposition of collagen fibers also decreased following AF-Exos transplantation. The concentrations of FSH and LH hormones in sera remained unchanged after injection of AF-Exos, while E2 levels increased (p < 0.05). The expression of Smad-4 (p < 0.01) and Smad-6 (p < 0.05) was upregulated in POI rats that received AF-Exos, while Smad-2, TGF-β1, TNF-α, and IL-10 remained statistically unchanged. Our records showed a notable increase in litter number after AF-Exos compared to the non-treated POI rats. These results suggest that AF-Exos transplantation has the potential to restore ovarian function through the TGF-β/Smads signaling pathway in POI rats.

Funder

Tabriz University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3