A methylation- and immune-related lncRNA signature to predict ovarian cancer outcome and uncover mechanisms of chemoresistance

Author:

Chen Lu,Gao Wujiang,Lin Li,Sha Chunli,Li Taoqiong,Chen Qi,Wei Hong,Yang Meiling,Xing Jie,Zhang Mengxue,Zhao Shijie,Xu Wenlin,Li Yuefeng,Long Lulu,Zhu Xiaolan

Abstract

AbstractTumor-associated lncRNAs regulated by epigenetic modification switches mediate immune escape and chemoresistance in ovarian cancer (OC). However, the underlying mechanisms and concrete targets have not been systematically elucidated. Here, we discovered that methylation modifications played a significant role in regulating immune cell infiltration and sensitizing OC to chemotherapy by modulating immune-related lncRNAs (irlncRNAs), which represent tumor immune status. Through deep analysis of the TCGA database, a prognostic risk model incorporating four methylation-related lncRNAs (mrlncRNAs) and irlncRNAs was constructed. Twenty-one mrlncRNA/irlncRNA pairs were identified that were significantly related to the overall survival (OS) of OC patients. Subsequently, we selected four lncRNAs to construct a risk signature predictive of OS and indicative of OC immune infiltration, and verified the robustness of the risk signature in an internal validation set. The risk score was an independent prognostic factor for OC prognosis, which was demonstrated via multifactorial Cox regression analysis and nomogram. Moreover, risk scores were negatively related to the expression of CD274, CTLA4, ICOS, LAG3, PDCD1, and PDCD1LG2 and negatively correlated with CD8+, CD4+, and Treg tumor-infiltrating immune cells. In addition, a high-risk score was associated with a higher IC50 value for cisplatin, which was associated with a significantly worse clinical outcome. Next, a competing endogenous RNA (ceRNA) network and a signaling pathway controlling the infiltration of CD8+ T cells were explored based on the lncRNA model, which suggested a potential therapeutic target for immunotherapy. Overall, this study constructed a prognostic model by pairing mrlncRNAs and irlncRNAs and revealed the critical role of the FTO/RP5-991G20.1/hsa-miR-1976/MEIS1 signaling pathway in regulating immune function and enhancing anticancer therapy.

Funder

Hospital level fund project of Taixing People's Hospital

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3