Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis

Author:

Sun Silei,Wang Daosheng,Dong Danfeng,Xu Lili,Xie Mengqi,Wang Yihui,Ni Tongtian,Jiang Weisong,Zhu Xiaojuan,Ning Ning,Sun Qian,Zhao Shuyuan,Li Mengjiao,Chen Peili,Yu Meiling,Li Jian,Chen Erzhen,Zhao Bing,Peng Yibing,Mao Enqiang

Abstract

Abstract Background The gut microbiome plays a pivotal role in the progression of sepsis. However, the specific mechanism of gut microbiota and its metabolites involved in the process of sepsis remains elusive, which limits its translational application. Method In this study, we used a combination of the microbiome and untargeted metabolomics to analyze stool samples from patients with sepsis enrolled at admission, then microbiota, metabolites, and potential signaling pathways that might play important roles in disease outcome were screened out. Finally, the above results were validated by the microbiome and transcriptomics analysis in an animal model of sepsis. Results Patients with sepsis showed destruction of symbiotic flora and elevated abundance of Enterococcus, which were validated in animal experiments. Additionally, patients with a high burden of Bacteroides, especially B. vulgatus, had higher Acute Physiology and Chronic Health Evaluation II scores and longer stays in the intensive care unit. The intestinal transcriptome in CLP rats illustrated that Enterococcus and Bacteroides had divergent profiles of correlation with differentially expressed genes, indicating distinctly different roles for these bacteria in sepsis. Furthermore, patients with sepsis exhibited disturbances in gut amino acid metabolism compared with healthy controls; namely, tryptophan metabolism was tightly related to an altered microbiota and the severity of sepsis. Conclusion Alterations in microbial and metabolic features in the gut corresponded with the progression of sepsis. Our findings may help to predict the clinical outcome of patients in the early stage of sepsis and provide a translational basis for exploring new therapies.

Funder

Shanghai natural science fund

National Natural Science Foundation of China

Clinical Research Project of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3