Author:
Barrett J. S.,Strauss J. A.,Chow L. S.,Shepherd S. O.,Wagenmakers A. J. M.,Wang Y.
Abstract
Abstract
Background
Insulin-stimulated glucose uptake into skeletal muscle occurs via translocation of GLUT4 from intracellular storage vesicles to the plasma membrane. Elevated free fatty acid (FFA) availability via a lipid infusion reduces glucose disposal, but this occurs in the absence of impaired proximal insulin signalling. Whether GLUT4 localisation to the plasma membrane is subsequently affected by elevated FFA availability is not known.
Methods
Trained (n = 11) and sedentary (n = 10) individuals, matched for age, sex and body mass index, received either a 6 h lipid or glycerol infusion in the setting of a concurrent hyperinsulinaemic-euglycaemic clamp. Sequential muscle biopsies (0, 2 and 6 h) were analysed for GLUT4 membrane localisation and microvesicle size and distribution using immunofluorescence microscopy.
Results
At baseline, trained individuals had more small GLUT4 spots at the plasma membrane, whereas sedentary individuals had larger GLUT4 spots. GLUT4 localisation with the plasma membrane increased at 2 h (P = 0.04) of the hyperinsulinemic-euglycemic clamp, and remained elevated until 6 h, with no differences between groups or infusion type. The number of GLUT4 spots was unchanged at 2 h of infusion. However, from 2 to 6 h there was a decrease in the number of small GLUT4 spots at the plasma membrane (P = 0.047), with no differences between groups or infusion type.
Conclusion
GLUT4 localisation with the plasma membrane increases during a hyperinsulinemic-euglycemic clamp, but this is not altered by elevated FFA availability. GLUT4 appears to disperse from small GLUT4 clusters located at the plasma membrane to support glucose uptake during a hyperinsulinaemic-euglycaemic clamp.
Funder
Diabetes UK
National Center for Research Resources
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Capaldo B, Gastaldelli A, Antoniello S, Auletta M, Pardo F, Ciociaro D, Guida R, Ferrannini E, Sacca L. Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans. Diabetes. 1999;48:958–66.
2. Katz LD, Glickman MG, Rapoport S, Ferrannini E, DeFronzo RA. Splanchnic and peripheral disposal of oral glucose in man. Diabetes. 1983;32:675–9.
3. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76:149–55.
4. DeFronzo RA, Binder C, Wahren J, Felig P, Ferrannini E, Faber OK. Sensitivity of insulin secretion to feedback inhibition by hyperinsulinaemia. Acta Endocrinol (Copenh). 1981;98:81–6.
5. Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes. 1982;31:957–63.