The development of proximity labeling technology and its applications in mammals, plants, and microorganisms

Author:

Guo Jieyu,Guo Shuang,Lu Siao,Gong Jun,Wang Long,Ding Liqiong,Chen Qingjie,Liu Wu

Abstract

AbstractProtein‒protein, protein‒RNA, and protein‒DNA interaction networks form the basis of cellular regulation and signal transduction, making it crucial to explore these interaction networks to understand complex biological processes. Traditional methods such as affinity purification and yeast two-hybrid assays have been shown to have limitations, as they can only isolate high-affinity molecular interactions under nonphysiological conditions or in vitro. Moreover, these methods have shortcomings for organelle isolation and protein subcellular localization. To address these issues, proximity labeling techniques have been developed. This technology not only overcomes the limitations of traditional methods but also offers unique advantages in studying protein spatial characteristics and molecular interactions within living cells. Currently, this technique not only is indispensable in research on mammalian nucleoprotein interactions but also provides a reliable approach for studying nonmammalian cells, such as plants, parasites and viruses. Given these advantages, this article provides a detailed introduction to the principles of proximity labeling techniques and the development of labeling enzymes. The focus is on summarizing the recent applications of TurboID and miniTurbo in mammals, plants, and microorganisms.

Funder

the National Natural Science Foundation of China

the Doctoral Foundation of HuBei University of Science and Technology

the Diabetes Open Fund of Hubei University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3