Putting human Tid-1 in context: an insight into its role in the cell and in different disease states

Author:

Banerjee Sagarika,Chaturvedi Rupesh,Singh Anu,Kushwaha Hemant R.

Abstract

Abstract Background Tumorous imaginal disc 1 (hTid-1) or DnaJ homolog subfamily A member 3 (DNAJA3), is a part of the heat shock protein (Hsp) 40 family and is predominantly found to reside in the mitochondria. hTid-1 has two mRNA splicing variants, hTid-1S and hTid-1L of 40 and 43 kDa respectively in the cytosol which are later processed upon import into the mitochondrial matrix. hTid-1 protein is a part of the DnaJ family of proteins which are co-chaperones and specificity factors for DnaK proteins of the Hsp70 family, and bind to Hsp70, thereby activating its ATPase activity. hTid-1 has been found to be critical for a lot of important cellular processes such as proliferation, differentiation, growth, survival, senescence, apoptosis, and movement and plays key roles in the embryo and skeletal muscle development. Main body hTid-1 participates in several protein–protein interactions in the cell, which mediate different processes such as proteasomal degradation and autophagy of the interacting protein partners. hTid-1 also functions as a co-chaperone and participates in interactions with several different viral oncoproteins. hTid-1 also plays a critical role in different human diseases such as different cancers, cardiomyopathies, and neurodegenerative disorders. Conclusion This review article is the first of its kind presenting consolidated information on the research findings of hTid-1 to date. This review suggests that the current knowledge of the role of hTid-1 in disorders like cancers, cardiomyopathies, and neurodegenerative diseases can be correlated with the findings of its protein–protein interactions that can provide a deep insight into the pathways by which hTid-1 affects disease pathogenesis and it can be stated that hTid-1 may serve as an important therapeutic target for these disorders. Graphical Abstract

Funder

University Grants Commission

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3