Sex hormone-binding globulin (SHBG) mitigates ER stress and improves viability and insulin sensitivity in adipose-derived mesenchymal stem cells (ASC) of equine metabolic syndrome (EMS)-affected horses

Author:

Bourebaba Nabila,Sikora Mateusz,Qasem Badr,Bourebaba Lynda,Marycz Krzysztof

Abstract

Abstract Background Equine metabolic syndrome (EMS), which encompasses insulin resistance, low-grade inflammation and predisposition to laminitis is a critical endocrine disorder among the most prevalent conditions affecting horses from different breeds. According to the most recent research, low human sex hormone-binding globulin (SHBG) serum levels correlate with an increased risk of obesity, insulin resistance and diabetes, and may contribute to overall metabolic dysregulations. This study aimed to test whether exogenous SHBG could protect EMS affected adipose-derived stromal stem cells (EqASCEMS) from apoptosis, oxidative stress, ER stress and thus improve insulin sensitivity. Methods EqASCEMS wells were treated with two different concentrations (50 and 100 nM) of exogenous SHBG, whose biocompatibility was tested after 24, 48 and 72 h of incubation. Several parameters including cell viability, apoptosis, cell cycle, reactive oxygen species levels, ER stress, Pi3K/MAPK activation and insulin transducers expression were analysed. Results Obtained data demonstrated that exogenous SHBG treatment significantly promoted ASCs cells proliferation, cell cycle and survival with reduced expression of p53 and p21 pro-apoptotic mediators. Furthermore, SHBG alleviated the oxidative stress caused by EMS and reduced the overaccumulation of intracellular ROS, by reducing ROS + cell percentage and regulating gene expression of endogenous antioxidant enzymes (Sod 1, Cat, GPx), SHBG treatment exhibited antioxidant activity by modulating total nitric oxide (NO) levels in EMS cells as well. SHBG treatment dampened the activation of ER stress sensors and effectors in EqASCEMS cells via the upregulation of MiR-7a-5p, the decrease in the expression levels of ATF-6, CHOP and eiF2A and the restoration of PDIA3 chaperone protein levels. As a consequence, SHBG application substantially improved insulin sensitivity through the modulation of Pi3K/Akt/Glut4 insulin signalling cascades. Conclusion Our results suggest that the SHBG is endowed with crucial beneficial effects on ASCs metabolic activities and could serve as a valuable therapeutic target for the development of efficient EMS treatment protocols.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3