Caspase 6 promotes innate immune activation by functional crosstalk between RIPK1-IκBα axis in liver inflammation

Author:

Lin Yuanbang,Sheng Mingwei,Qin Hua,Zhang Peng,Wang Chunli,Fu Wei,Meng Xiangjun,Wang Duowei,Hou Yachao

Abstract

Abstract Background Caspase 6 is an essential regulator in innate immunity, inflammasome activation and host defense. We aimed to characterize the causal mechanism of Caspase 6 in liver sterile inflammatory injury. Methods Human liver tissues were harvested from patients undergoing ischemia-related hepatectomy to evaluate Caspase 6 expression. Subsequently, we created Caspase 6-knockout (Caspase 6KO) mice to analyze roles and molecular mechanisms of macrophage Caspase 6 in murine models of liver ischemia/reperfusion (IR) injury. Results In human liver biopsies, Caspase 6 expression was positively correlated with more severe histopathological injury and higher serum ALT/AST level at one day postoperatively. Moreover, Caspase 6 was mainly elevated in macrophages but not hepatocytes in ischemic livers. Unlike in controls, the Caspase 6-deficient livers were protected against IR injury, as evidenced by inhibition of inflammation, oxidative stress and iron overload. Disruption of macrophage NF-κB essential modulator (NEMO) in Caspase 6-deficient livers deteriorated liver inflammation and ferroptosis. Mechanistically, Caspase 6 deficiency spurred NEMO-mediated IκBα phosphorylation in macrophage. Then phosphorylated-inhibitor of NF-κBα (p-IκBα) co-localized with receptor-interacting serine/ threonine-protein kinase 1 (RIPK1) in the cytoplasm to degradate RIPK1 under inflammatory conditions. The disruption of RIPK1-IκBα interaction preserved RIPK1 degradation, triggering downstream apoptosis signal-regulating kinase 1 (ASK1) phosphorylation and inciting NIMA-related kinase 7/NOD-like receptor family pyrin domain containing 3 (NEK7/NLRP3) activation in macrophages. Moreover, ablation of macrophage RIPK1 or ASK1 diminished NEK7/NLRP3-driven inflammatory response and dampened hepatocyte ferroptosis by reducing HMGB1 release from macrophages. Conclusions Our findings underscore a novel mechanism of Caspase 6 mediated RIPK1-IκBα interaction in regulating macrophage NEK7/NLRP3 function and hepatocytes ferroptosis, which provides therapeutic targets for clinical liver IR injury. Graphical Abstract

Funder

National Natural Science Foundation of China

Tianjin Key Medical Discipline (Specialty) Construction Project

Natural Science Foundation of Tianjin City

Science and Technology Foundation of Tianjin Health Bureau

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3