GOLGA7 is essential for NRAS trafficking from the Golgi to the plasma membrane but not for its palmitoylation

Author:

Liu Chenxuan,Jiao Bo,Wang Peihong,Zhang Baoyuan,Gao Jiaming,Li Donghe,Xie Xi,Yao Yunying,Yan Lei,Qin Zhenghong,Liu Ping,Ren Ruibao

Abstract

AbstractNRAS mutations are most frequently observed in hematological malignancies and are also common in some solid tumors such as melanoma and colon cancer. Despite its pivotal role in oncogenesis, no effective therapies targeting NRAS has been developed. Targeting NRAS localization to the plasma membrane (PM) is a promising strategy for cancer therapy, as its signaling requires PM localization. However, the process governing NRAS translocation from the Golgi apparatus to the PM after lipid modification remains elusive. This study identifies GOLGA7 as a crucial factor controlling NRAS’ PM translocation, demonstrating that its depletion blocks NRAS, but not HRAS, KRAS4A and KRAS4B, translocating to PM. GOLGA7 is known to stabilize the palmitoyltransferase ZDHHC9 for NRAS and HRAS palmitoylation, but we found that GOLGA7 depletion does not affect NRAS’ palmitoylation level. Further studies show that loss of GOLGA7 disrupts NRAS anterograde trafficking, leading to its cis-Golgi accumulation. Remarkably, depleting GOLGA7 effectively inhibits cell proliferation in multiple NRAS-mutant cancer cell lines and attenuates NRASG12D-induced oncogenic transformation in vivo. These findings elucidate a specific intracellular trafficking route for NRAS under GOLGA7 regulation, highlighting GOLGA7 as a promising therapeutic target for NRAS-driven cancers.

Funder

the Key Project of National Natural Science Foundation of China

Shanghai Pujiang Program

the Innovative Research Team of High-level Local Universities in Shanghai

Shanghai Science and Technology Development Funds

Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research

the Samuel Waxman Cancer Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3