ZDHHC5-mediated S-palmitoylation of FAK promotes its membrane localization and epithelial-mesenchymal transition in glioma

Author:

Wang Yang,Shen Na,Yang Yang,Xia Yuan,Zhang Wenhao,Lu Yu,Wang Zhicheng,Yang Ze,Wang Zhangjie

Abstract

Abstract Background Abnormal activation of FAK is associated with tumor development and metastasis. Through interactions with other intracellular signalling molecules, FAK influences cytoskeletal remodelling, modulation of adhesion signalling, and activation of transcription factors, promoting migration and invasion of tumor cells. However, the exact mechanism that regulates these processes remains unresolved. Herein, our findings indicate that the S-palmitoylation of FAK is crucial for both its membrane localization and activation. Methods The palmitoylation of FAK in U251 and T98G cells was assessed by an acyl-PEG exchange (APE) assay and a metabolic incorporation assay. Cellular palmitoylation was inhibited using 2-bromopalmitate, and the palmitoylation status and cellular localization of FAK were determined. A metabolic incorporation assay was used to identify the potential palmitoyl acyltransferase and the palmitoylation site of FAK. Cell Counting Kit-8 (CCK8) assays, colony formation assays, and Transwell assays were conducted to assess the impact of ZDHHC5 in GBM. Additionally, intracranial GBM xenografts were utilized to investigate the effects of genetically silencing ZDHHC5 on tumor growth. Results Inhibiting FAK palmitoylation leads to its redistribution from the membrane to the cytoplasm and a decrease in its phosphorylation. Moreover, ZDHHC5, a protein-acyl-transferase (PAT), catalyzes this key modification of FAK at C456. Knockdown of ZDHHC5 abrogates the S-palmitoylation and membrane distribution of FAK and impairs cell proliferation, invasion, and epithelial-mesenchymal transition (EMT). Taken together, our research reveals the crucial role of ZDHHC5 as a PAT responsible for FAK S-palmitoylation, membrane localization, and activation. Conclusions These results imply that targeting the ZDHHC5/FAK axis has the potential to be a promising strategy for therapeutic interventions for glioblastoma (GBM).

Funder

Key Program of Taizhou School of Clinical Medicine of Nanjing Medical University

Research Program of Taizhou People's Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3