Disrupted brain network dynamics and cognitive functions in methamphetamine use disorder: insights from EEG microstates

Author:

Chen Tianzhen,Su Hang,Zhong Na,Tan Haoye,Li Xiaotong,Meng Yiran,Duan Chunmei,Zhang Congbin,Bao Juwang,Xu Ding,Song Weidong,Zou Jixue,Liu Tao,Zhan Qingqing,Jiang Haifeng,Zhao Min

Abstract

Abstract Background Dysfunction in brain network dynamics has been found to correlate with many psychiatric disorders. However, there is limited research regarding resting electroencephalogram (EEG) brain network and its association with cognitive process for patients with methamphetamine use disorder (MUD). This study aimed at using EEG microstate analysis to determine whether brain network dynamics in patients with MUD differ from those of healthy controls (HC). Methods A total of 55 MUD patients and 27 matched healthy controls were included for analysis. The resting brain activity was recorded by 64-channel electroencephalography. EEG microstate parameters and intracerebral current sources of each EEG microstate were compared between the two groups. Generalized linear regression model was used to explore the correlation between significant microstates with drug history and cognitive functions. Results MUD patients showed lower mean durations of the microstate classes A and B, and a higher global explained variance of the microstate class C. Besides, MUD patients presented with different current density power in microstates A, B, and C relative to the HC. The generalized linear model showed that MA use frequency is negatively correlated with the MMD of class A. Further, the generalized linear model showed that MA use frequency, scores of Two-back task, and the error rate of MA word are correlated with the MMD and GEV of class B, respectively. Conclusions Intracranial current source densities of resting EEG microstates are disrupted in MUD patients, hence causing temporal changes in microstate topographies, which are correlated with attention bias and history of drug use.

Funder

National Key R&D Program of China

National Nature Science Foundation

Shanghai Municipal Health and Family Planning Commission

Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences in Shanghai

Shanghai Key Laboratory of Psychotic Disorders

Program of Shanghai Academic Research Leader

Clinical Research Center of Shanghai Jiao Tong University School of Medicine

Shanghai Science and Technology Committee

Shanghai Municipal Science and Technology Major Project

Shanghai Clinical Research Center for Mental Health

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3