In-silico engineering of RNA nanoplatforms to promote the diabetic wound healing

Author:

Beheshtizadeh Nima,Salimi Alireza,Golmohammadi Mahsa,Ansari Javad Mohajer,Azami Mahmoud

Abstract

AbstractOne of the most notable required features of wound healing is the enhancement of angiogenesis, which aids in the acceleration of regeneration. Poor angiogenesis during diabetic wound healing is linked to a shortage of pro-angiogenic or an increase in anti-angiogenic factors. As a result, a potential treatment method is to increase angiogenesis promoters and decrease suppressors. Incorporating microRNAs (miRNAs) and small interfering RNAs (siRNAs), two forms of quite small RNA molecules, is one way to make use of RNA interference. Several different types of antagomirs and siRNAs are now in the works to counteract the negative effects of miRNAs. The purpose of this research is to locate novel antagonists for miRNAs and siRNAs that target multiple genes to promote angiogenesis and wound healing in diabetic ulcers.In this context, we used gene ontology analysis by exploring across several datasets. Following data analysis, it was processed using a systems biology approach. The feasibility of incorporating the proposed siRNAs and miRNA antagomirs into polymeric bioresponsive nanocarriers for wound delivery was further investigated by means of a molecular dynamics (MD) simulation study. Among the three nanocarriers tested (Poly (lactic-co-glycolic acid) (PLGA), Polyethylenimine (PEI), and Chitosan (CTS), MD simulations show that the integration of PLGA/hsa-mir-422a is the most stable (total energy = -1202.62 KJ/mol, Gyration radius = 2.154 nm, and solvent-accessible surface area = 408.416 nm2). With values of -25.437 KJ/mol, 0.047 nm for the Gyration radius, and 204.563 nm2 for the SASA, the integration of the second siRNA/ Chitosan took the last place. The results of the systems biology and MD simulations show that the suggested RNA may be delivered through bioresponsive nanocarriers to speed up wound healing by boosting angiogenesis.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diabetic wound healing of aloe vera major phytoconstituents through TGF-β1 suppression via in-silico docking, molecular dynamic simulation and pharmacokinetic studies;Journal of Biomolecular Structure and Dynamics;2023-11-09

2. Advances in Nanomaterials for Drug Delivery;Cutting-Edge Applications of Nanomaterials in Biomedical Sciences;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3