Synthesis, characterization, DNA binding interactions, DFT calculations, and Covid-19 molecular docking of novel bioactive copper(I) complexes developed via unexpected reduction of azo-hydrazo ligands

Author:

Elsayed Eman Hassan,Al-Wahaib Dhuha,Ali Ali El-Dissouky,Abd-El-Nabey Beshir A.,Elbadawy Hemmat A.

Abstract

AbstractIn this work, we focused on the 3rd goal of the sustainable development plan: achieving good health and supporting well-being. Two redox-active hydrazo ligands namely, phenylcarbonohydrazonoyldicyanide (PCHD) and pyridin-4-ylcarbonohydrazonoyl-dicyanide (PyCHD), and their copper(I) complexes have been synthesized and characterized. The analytical data indicates the formation of copper(I) complexes despite starting with copper(II) perchlorate salt. The 1H-NMR and UV–visible spectral studies in DMSO revealed that PyCHD mainly exists in its azo-form, while PCHD exists in azo ↔ hydrazo equilibrium form, and confirmed the copper(I) oxidation state. XPS, spectral and electrochemistry data indicated the existence of copper(I) valence of both complexes. Cyclic voltammetry of PCHD and its copper(I) complex supported the reduction power of the ligand. The antimicrobial activity, cytotoxicity against the mammalian breast carcinoma cell line (MCF7), and DNA interaction of the compounds are investigated. All compounds showed high antimicrobial, and cytotoxic activities, relative to the standard drugs. Upon studying the wheat DNA binding, PCHD and PyCHD were found to bind through external contacts, while both [Cu(PCHD)2]ClO4.H2O and [Cu(PyCHD)2]ClO4.H2O were intercalated binding. In-silico molecular docking simulations against Estrogen Receptor Alpha Ligand Binding Domain (ID: 6CBZ) were performed on all produced compounds and confirmed the invitro experimentally best anticancer activity of [Cu(PyCHD)2]ClO4.H2O. The molecular docking tests against SARS-CoV-2 main protease (ID: 6 WTT) showed promising activity in the order of total binding energy values: [Cu(PCHD)2]ClO4.H2O > [Cu(PyCHD)2]ClO4.H2O > PCHD > PyCHD.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3