Novel 8-Methoxycoumarin-3-Carboxamides with potent anticancer activity against liver cancer via targeting caspase-3/7 and β-tubulin polymerization

Author:

Alzamami Ahmad,Radwan Eman M.,Abo-Elabass Eman,Behery Mohammed El,Alshwyeh Hussah Abdullah,Al-Olayan Ebtesam,Altamimi Abdulmalik S.,Attallah Nashwah G. M.,Altwaijry Najla,Jaremko Mariusz,Saied Essa M.

Abstract

AbstractIn the present study, we explored the potential of coumarin-based compounds, known for their potent anticancer properties, by designing and synthesizing a novel category of 8-methoxycoumarin-3-carboxamides. Our aim was to investigate their antiproliferative activity against liver cancer cells. Toward this, we developed a versatile synthetic approach to produce a series of 8-methoxycoumarin-3-carboxamide analogues with meticulous structural features. Assessment of their antiproliferative activity demonstrated their significant inhibitory effects on the growth of HepG2 cells, a widely studied liver cancer cell line. Among screened compounds, compound 5 exhibited the most potent antiproliferative activity among the screened compounds (IC50 = 0.9 µM), outperforming the anticancer drug staurosporine (IC50 = 8.4 µM), while showing minimal impact on normal cells. The flow cytometric analysis revealed that compound 5 induces cell cycle arrest during the G1/S phase and triggers apoptosis in HepG2 cells by increasing the percentage of cells arrested in the G2/M and pre-G1 phases. Annexin V-FITC/PI screening further supported the induction of apoptosis without significant necrosis. Further, compound 5 exhibited the ability to activate caspase3/7 protein and substantially inhibited β-tubulin polymerization activity in HepG2 cells. Finally, molecular modelling analysis further affirmed the high binding affinity of compound 5 toward the active cavity of β-tubulin protein, suggesting its mechanistic involvement. Collectively, our findings highlight the therapeutic potential of the presented class of coumarin analogues, especially compound 5, as promising candidates for the development of effective anti-hepatocellular carcinoma agents.

Funder

Humboldt-Universität zu Berlin

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3