Chalcone/1,3,4-Oxadiazole/Benzimidazole hybrids as novel anti-proliferative agents inducing apoptosis and inhibiting EGFR & BRAFV600E

Author:

Hagar Fatma Fouad,Abbas Samar H.,Gomaa Hesham A. M.,Youssif Bahaa G. M.,Sayed Ahmed M.,Abdelhamid Dalia,Abdel-Aziz Mohamed

Abstract

Abstract Introduction One of the most robust global challenges and difficulties in the 21st century is cancer. Treating cancer is a goal which continues to motivate researchers to innovate in design and development of new treatments to help battle the disease. Objectives Our objective was developing new antiapoptotic hybrids based on biologically active heterocyclic motifs "benzimidazole?oxadiazole-chalcone hybrids'' that had shown promising ability to inhibit EGFR and induce apoptosis. We expected these scaffolds to display anticancer activity via inhibition of BRAF, EGFR, and Bcl-2 and induction of apoptosis through activation of caspases. Methods The new hybrids 7a-x were evaluated for their anti-proliferative, EGFR & BRAFV600E inhibitory, and apoptosis induction activities were detected. Docking study & dynamic stimulation into EGFR and BRAFV600E were studied. Results All hybrids exhibited remarkable cell growth inhibition on the four tested cell lines with IC50 ranging from 0.95 μM to 12.50 μM. which was comparable to Doxorubicin. Compounds 7k-m had the most potent EGFR inhibitory activity. While, compounds 7e, 7g, 7k and 7l showed good inhibitory activities against BRAFV600E. Furthermore, Compounds 7k, 7l, and 7m increased Caspases 3,8 & 9, Cytochrome C and Bax levels and decreased Bcl-2 protein levels. Compounds 7k-m received the best binding scores and showed binding modes that were almost identical to each other and comparable with that of the co-crystalized Erlotinib in EGFR and BRAF active sites. Conclusion Compounds 7k-m could be used as potential apoptotic anti-proliferative agents upon further optimization.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3