Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System

Author:

Javanshir Nahid,Hosseini Golsa Nayeb Ghanbar,Sadeghi Mahdieh,Esmaeili Ramtin,Satarikia Fateme,Ahmadian Gholamreza,Allahyari Najaf

Abstract

AbstractDue to the importance of using cost-effective methods for therapeutic purposes, the function of probiotics as safe microorganisms and the study of their relevant functional mechanisms have recently been in the spotlight. Finding the mechanisms of attachment and stability and their beneficial effects on the immune system can be useful in identifying and increasing the therapeutic effects of probiotics. In this review, the functional mechanisms of probiotics were comprehensively investigated. Relevant articles were searched in scientific sources, documents, and databases, including PubMed, NCBI, Bactibace, OptiBac, and Bagel4. The most important functional mechanisms of probiotics and their effects on strengthening the epithelial barrier, competitive inhibition of pathogenic microorganisms, production of antimicrobials, binding and interaction with the host, and regulatory effects on the immune system were discussed.In this regard, the attachment of probiotics to the epithelium is very important because the prerequisite for their proper functioning is to establish a proper connection to the epithelium. Therefore, more attention should be paid to the binding effect of probiotics, including sortase A, a significant factor involved in the expression of sortase-dependent proteins (SDP), on their surface as mediators of intestinal epithelial cell binding. In general, by investigating the functional mechanisms of probiotics, it was concluded that the mechanism by which probiotics regulate the immune system and adhesion capacity can directly and indirectly have preventive and therapeutic effects on a wide range of diseases. However, further study of these mechanisms requires extensive research on various aspects.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3