An adversarial environment reinforcement learning-driven intrusion detection algorithm for Internet of Things

Author:

Mahjoub Chahira,Hamdi Monia,Alkanhel Reem Ibrahim,Mohamed Safa,Ejbali RidhaORCID

Abstract

AbstractThe increasing prevalence of Internet of Things (IoT) systems has made them attractive targets for malicious actors. To address the evolving threats and the growing complexity of detection, there is a critical need to search for and develop new algorithms that are fast and robust in detecting and classifying dangerous network traffic. In this context, deep reinforcement learning (DRL) is gaining recognition as a prospective solution in numerous fields as it enables autonomous agents to cooperate with their environment for decision-making without relying on human experts. This article presents an innovative approach to intrusion detection in IoT systems using an adversarial reinforcement learning (RL) algorithm known for its exceptional predictive capabilities. The predictive process relies on a classifier, implemented as a streamlined and highly efficient neural network. Embedded within this classifier is a policy function meticulously trained using an innovative RL model. Importantly, this model ensures that the environment’s behavior is dynamically fine-tuned simultaneously with the learning process, improving the overall effectiveness of the intrusion detection approach. The efficiency of our proposal was assessed using the Bot-IoT database, consisting of a mixture of legitimate IoT network traffic and simulated attack scenarios. Our scheme shows superior performance compared to existing ones. Therefore, our approach to IoT intrusion detection can be considered a valuable alternative to existing methods, capable of significantly improving the IoT systems’ security.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3