Research on sports fitness management based on blockchain and Internet of Things

Author:

Shan Yu,Mai Yuehui

Abstract

AbstractThe amount of exercise and fitness level of sports athletes can be quantitatively evaluated through the measurement of health and sports information, thereby ensuring effective fitness effects. The development of blockchain and Internet of Things technology provides a new perspective and technical means for fitness management technology. In view of the current problems in the field of sports fitness, this paper designs and implements a dynamic management technology for sports fitness based on the concept of Internet of Things and blockchain. First, based on an in-depth analysis of the current status of theoretical research and application of the Internet of health at home and abroad, the theories and methods of sports information and health information collection are studied. A temperature sensor and an acceleration sensor are used to collect human body temperature and exercise steps, respectively, and then estimate human health and exercise conditions. Second, solve the privacy problem in the collection and transmission of the Internet of Things by adding blockchain technology. Finally, the machine-learning method is used to clean and manage the information and data to realize the real-time detection and management of the athlete’s fitness status. The actual case test shows that the functions and technical performance indicators of the dynamic fitness management technology can meet the needs of users in indoor and outdoor fitness management, and promote the development of the sports industry and provide a scientific reference.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference30 articles.

1. G. Wang, S. Zhang, S. Dong, D. Lou, L. Ma, X. Pei, H. Xu, U. Farooq, W. Guo, J. Luo, Stretchable optical sensing patch system integrated heart rate, pulse oxygen saturation, and sweat pH detection. IEEE Trans. Biomed. Eng. 66(4), 1000–1005 (2019)

2. D. Hansen, J. Niebauer, V. Cornelissen, O. Barna, D. Neunhuserer, C. Stettler, C. Tonoli, E. Greco, R. Fagard, K. Coninx, Exercise prescription in patients with different combinations of cardiovascular disease risk factors: a consensus statement from the EXPERT working group. Sports Med. 46(4), 312–326 (2018)

3. W. Guangming, Z. Shaomin, D. Shurong, L. Dong, M. Lie, P. Xiachuan, X. Hongsheng, U. Farooq, G. Wei, L. Jikui, Stretchable optical sensing patch system integrated heart rate, pulse oxygen saturation and sweat pH detection. IEEE Trans. Biomed. Eng. 14(4), 121–136 (2018)

4. K. Zhang, Y. Zhu, S. Maharjan, Y. Zhang, Edge intelligence and blockchain empowered 5G beyond for the industrial Internet of Things. IEEE Netw. 33(5), 12–19 (2019)

5. D. Zhang, G. Lindholm, H. Ratnaweera, Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring. J. Hydrol. 556, 409–418 (2018)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3