Tibial fracture surgery in elderly mice caused postoperative neurocognitive disorder via SOX2OT lncRNA in the hippocampus

Author:

Xiao Zhibin,Zhang Xiajing,Li Guangyao,Sun Li,Li Jiangjing,Jing Ziwei,Qiu Qingya,He Guangxiang,Gao Changjun,Sun Xude

Abstract

AbstractIncreasing evidence indicates the major role of mitochondrial function in neurodegenerative disease. However, it is unclear whether mitochondrial dynamics directly affect postoperative neurocognitive disorder (PND). This study aimed to analyze the underlying mechanisms of mitochondrial dynamics in the pathogenesis of PND. Tibial fracture surgery was performed in elderly mice to generate a PND model in vivo. Cognitive behavior was evaluated 3 days post-surgery using novel object recognition and fear conditioning. A gradual increase in the SOX2OT mRNA level and decrease in the SOX2 mRNA level were noted, with impaired cognitive function, in the mice 3 days after tibial surgery compared with mice in the sham group. To evaluate the role of SOX2OT in PND, SOX2OT knockdown was performed in vitro and in vivo using lentivirus transfection in HT22 cells and via brain stereotactic injection of lentivirus, respectively. SOX2OT knockdown reduced apoptosis, inhibited oxidative stress, suppressed mitochondrial hyperdivision, attenuated surgery-induced cognitive dysfunction, and promoted downstream SOX2 expression in elderly mice. Furthermore, Sox2 alleviated mitochondrial functional damage by inhibiting the transcription of mitochondrial division protein Drp1. Our study findings indicate that SOX2OT knockout alleviates surgery-induced mitochondrial fission and cognitive function defects by upregulating the expression of Sox2 in mice, resulting in the inhibition of drp1 transcription. Therefore, regulation of the SOX2/Drp1 pathway may be a potential mechanism for the treatment of patients with PND.

Funder

National Natural Science Foundation of China

Shaan Xi Natural Science Project

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3