Moderate effect of early-life experience on dentate gyrus function

Author:

Rukundo Pacifique,Feng Ting,Pham Vincent,Pieraut SimonORCID

Abstract

AbstractThe development, maturation, and plasticity of neural circuits are strongly influenced by experience and the interaction of an individual with their environment can have a long-lasting effect on cognitive function. Using an enriched environment (EE) paradigm, we have recently demonstrated that enhancing social, physical, and sensory activity during the pre-weaning time in mice led to an increase of inhibitory and excitatory synapses in the dentate gyrus (DG) of the hippocampus. The structural plasticity induced by experience may affect information processing in the circuit. The DG performs pattern separation, a computation that enables the encoding of very similar and overlapping inputs into dissimilar outputs. In the presented study, we have tested the hypothesis that an EE in juvenile mice will affect DG’s functions that are relevant for pattern separation: the decorrelation of the inputs from the entorhinal cortex (EC) and the recruitment of the principal excitatory granule cell (GC) during behavior. First, using a novel slice electrophysiology protocol, we found that the transformation of the incoming signal from the EC afferents by individual GC is moderately affected by EE. We further show that EE does not affect behaviorally induced recruitment of principal excitatory GC. Lastly, using the novel object recognition task, a hippocampus-dependent memory test, we show that the ontogeny of this discrimination task was similar among the EE mice and the controls. Taken together, our work demonstrates that pre-weaning enrichment moderately affects DG function.

Funder

General Medical Sciences of the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3