Ackr3-Venus knock-in mouse lights up brain vasculature

Author:

Ehrlich Aliza T.ORCID,Semache Meriem,Couvineau Pierre,Wojcik Stefan,Kobayashi Hiroyuki,Thelen Marcus,Gross Florence,Hogue Mireille,Le Gouill Christian,Darcq Emmanuel,Bouvier Michel,Kieffer Brigitte L.

Abstract

AbstractThe atypical chemokine receptor 3, ACKR3, is a G protein-coupled receptor, which does not couple to G proteins but recruits βarrestins. At present, ACKR3 is considered a target for cancer and cardiovascular disorders, but less is known about the potential of ACKR3 as a target for brain disease. Further, mouse lines have been created to identify cells expressing the receptor, but there is no tool to visualize and study the receptor itself under physiological conditions. Here, we engineered a knock-in (KI) mouse expressing a functional ACKR3-Venus fusion protein to directly detect the receptor, particularly in the adult brain. In HEK-293 cells, native and fused receptors showed similar membrane expression, ligand induced trafficking and signaling profiles, indicating that the Venus fusion does not alter receptor signaling. We also found that ACKR3-Venus enables direct real-time monitoring of receptor trafficking using resonance energy transfer. In ACKR3-Venus knock-in mice, we found normal ACKR3 mRNA levels in the brain, suggesting intact gene transcription. We fully mapped receptor expression across 14 peripheral organs and 112 brain areas and found that ACKR3 is primarily localized to the vasculature in these tissues. In the periphery, receptor distribution aligns with previous reports. In the brain there is notable ACKR3 expression in endothelial vascular cells, hippocampal GABAergic interneurons and neuroblast neighboring cells. In conclusion, we have generated Ackr3-Venus knock-in mice with a traceable ACKR3 receptor, which will be a useful tool to the research community for interrogations about ACKR3 biology and related diseases.

Funder

Réseau Québécois de Recherche sur les Médicaments

Region Alsace/Biovalley

FEDER

National Institute on Drug Abuse

Canadian Institute for Health Research

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3