Author:
Smallbone Kieran,Simeonidis Evangelos,Swainston Neil,Mendes Pedro
Abstract
Abstract
Background
Advances in bioinformatic techniques and analyses have led to the availability of genome-scale metabolic reconstructions. The size and complexity of such networks often means that their potential behaviour can only be analysed with constraint-based methods. Whilst requiring minimal experimental data, such methods are unable to give insight into cellular substrate concentrations. Instead, the long-term goal of systems biology is to use kinetic modelling to characterize fully the mechanics of each enzymatic reaction, and to combine such knowledge to predict system behaviour.
Results
We describe a method for building a parameterized genome-scale kinetic model of a metabolic network. Simplified linlog kinetics are used and the parameters are extracted from a kinetic model repository. We demonstrate our methodology by applying it to yeast metabolism. The resultant model has 956 metabolic reactions involving 820 metabolites, and, whilst approximative, has considerably broader remit than any existing models of its type. Control analysis is used to identify key steps within the system.
Conclusions
Our modelling framework may be considered a stepping-stone toward the long-term goal of a fully-parameterized model of yeast metabolism. The model is available in SBML format from the BioModels database (BioModels ID: MODEL1001200000) and at http://www.mcisb.org/resources/genomescale/.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology
Cited by
128 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献