Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber

Author:

Li Hengyu,Lou Jie,Chen Xiaolu,Dou Yuwei,Zhang Dalong,Wei Min

Abstract

Abstract Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3