Sphingobium sp. V4, a bacterium degrading multiple allelochemical phenolic acids

Author:

Zhang ChunyangORCID,Liu Shuping,Guo Qingying,Li Demin,Li Zelin,Ma Qinyuan,Liu Hong,Zhao Qian,Liu Hongliang,Ding Zhongfeng,Gong Weihua,Gao Yuhao

Abstract

Abstract Background Continuous cropping challenges constrain the development of agriculture. Three main obstacles limit continuous cropping: autotoxicity of plant allelochemicals, deterioration of physicochemical characteristics of soil, and microflora imbalance. Plant-derived phenolic acids can cause autotoxicity, which is considered the main factor mediating continuous cropping obstacles. Reducing the phenolic acids in continuous cropping soils can decrease the autotoxicity of phenolic acids and ameliorate continuous cropping obstacles. Therefore, it is important to study the microbial resources that degrade allelochemical phenolic acids. Thus, the bacterial strain V4 that can degrade phenolic acids was isolated, identified, and genomically analyzed. Results Strain V4 isolated from strawberry soil using vanillic acid-mineral agar was identified as a Gram-negative short rod bacterium. Subsequent 16S rRNA phylogenetic analysis revealed that V4 clustered with members of the genus Sphingobium. The most closely related species were Sphingobium lactosutens DS20T (99% similarity) and Sphingobium abikonense NBRC 16140T (97.5% similarity). V4 also shared > 95% sequence similarity with other members of Sphingobium, so Sphingobium sp. V4 was named accordingly. Biochemical tests revealed that the biochemical characteristics of Sphingobium sp. V4 were similar to its most similar strains except for some properties. Sphingobium sp. V4 effectively degraded vanillic acid, ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, and syringic acid. V4 grew best at the conditions of 30 °C, pH 6.0–7.0, and 0–0.05% NaCl. 500 mg/L vanillic acid was completely degraded by V4 within 24 h under the optimal conditions. Whole genome analysis showed that Sphingobium sp. V4 contained one chromosome and three plasmids. Two genes involved in vanillic acid degradation were found in the V4 genome: the gene encoding vanillate O-demethylase oxidoreductase VanB on the chromosome and the gene encoding vanillate monooxygenase on a large plasmid. The organization of vanillate catabolic genes differed from the adjacent organization of the genes, encoding vanillate o-demethylase VanA and VanB subunits, in Pseudomonas and Acinetobacter. Conclusions The isolated bacterium Sphingobium sp. V4 degraded multiple phenolic acids. Its properties and genome were further analyzed. The study provides support for further investigation and application of this phenolic acid-degrading microorganism to alleviate continuous cropping obstacles in agriculture.

Funder

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3