How to tell the difference between a model and a digital twin

Author:

Wright Louise,Davidson Stuart

Abstract

Abstract“When I use a word, it means whatever I want it to mean”: Humpty Dumpty in Alice’s Adventures Through The Looking Glass, Lewis Carroll. “Digital twin” is currently a term applied in a wide variety of ways. Some differences are variations from sector to sector, but definitions within a sector can also vary significantly. Within engineering, claims are made regarding the benefits of using digital twinning for design, optimisation, process control, virtual testing, predictive maintenance, and lifetime estimation. In many of its usages, the distinction between a model and a digital twin is not made clear. The danger of this variety and vagueness is that a poor or inconsistent definition and explanation of a digital twin may lead people to reject it as just hype, so that once the hype and the inevitable backlash are over the final level of interest and use (the “plateau of productivity”) may fall well below the maximum potential of the technology. The basic components of a digital twin (essentially a model and some data) are generally comparatively mature and well-understood. Many of the aspects of using data in models are similarly well-understood, from long experience in model validation and verification and from development of boundary, initial and loading conditions from measured values. However, many interesting open questions exist, some connected with the volume and speed of data, some connected with reliability and uncertainty, and some to do with dynamic model updating. In this paper we highlight the essential differences between a model and a digital twin, outline some of the key benefits of using digital twins, and suggest directions for further research to fully exploit the potential of the approach.

Funder

National Measurement System Programme, Data Science Theme

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modeling and Simulation

Reference23 articles.

1. West T, Blackburn M. Is digital thread/digital twin affordable? A systemic assessment of the cost of DoD’s latest manhattan project. In: Complex adaptive systems, Chicago, USA, 2017.

2. Digital Twin—looking behind the buzzwords, April 2018 edition of benchmark magazine. https://www.nafems.org/publications/benchmark/archive/april-2018/. Accessed 19 Feb 2020.

3. [eBook] Forging the digital twin in discrete manufacturing: a vision for unity in the virtual and real worlds. https://www.lnsresearch.com/research-library/research-articles/ebook-forging-the-digital-twin-in-discrete-manufacturing-a-vision-for-unity-in-the-virtual-and-real-worlds. Accessed 19 Feb 2020.

4. Richard P, Fang H, Davis R. Foundation for the redefinition of the kilogram. Metrologia. 2016;53(5):A6.

5. Robinson IA, Schlamminger S. The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass. Metrologia. 2016;53(5):A46.

Cited by 262 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3