Artificial intelligence in clinical research

Author:

Nayak Veerabhadra Sanekal,Khan Mohammed Saleem,Shukla Bharat Kumar,Chaturvedi Pranjal R.

Abstract

<p>Envision dedicating fifteen years to a critical interest and emptying staggering amount of funds into it, at the same time confronting a disappointment rate of 95 percent. That is the crippling reality for pharmaceutical organizations, which toss billions of dollars consistently toward medications that possible won't work – and after that do a reversal to the planning phase and do it once more. Today's medications go to the business sector after an extensive, very costly process of drug development. It takes anywhere in the range of 10 to 15 years, here and there significantly more, to convey a medication from introductory revelation to the hands of patients – and that voyage can cost billions up to 12 billion, to be correct. That is just a lot to spend, and excessively yearn for patients to hold up. Patients can hardly wait 15 years for a lifesaving drug, we require another productive focused on medication revelation and improvement process. Artificial Intelligence, can significantly reduce the time included, and also cut the expenses by more than half. This is made conceivable through a totally distinctive way to deal with medication revelation. With the present technique, for each 100 medications that achieve first stage clinical trials, only one goes ahead to wind up a genuine treatment. That is stand out percent, it's an unsustainable model, particularly when there are ailments, for example, pancreatic malignancy which has a normal five-year survival rate of 6%.</p>

Publisher

Medip Academy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Drug Development and Healthcare—Nature and Scope;Frontiers of Artificial Intelligence, Ethics and Multidisciplinary Applications;2024

2. USE OF ARTIFICIAL INTELLIGENCE IN IN SILICO DRUG DISCOVERY OF PHARMACEUTICALS;INDIAN DRUGS;2022-02-21

3. Artificial Intelligence and Its Applications in Drug Discovery, Formulation Development, and Healthcare;Computer Aided Pharmaceutics and Drug Delivery;2022

4. Computers in Clinical Development;Computer Aided Pharmaceutics and Drug Delivery;2022

5. AI and Big Data for Drug Discovery;Trends of Artificial Intelligence and Big Data for E-Health;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3