ULTRASOUND-BASED MACHINE LEARNING-AIDED DETECTION OF UTERINE FIBROIDS: INTEGRATING VISION TRANSFORMER FOR IMPROVED ANALYSIS

Author:

Kaveramma U. P. Prinith1,Snekhalatha U.12ORCID,Karthik Varshini1ORCID,Anuradha M.3

Affiliation:

1. Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India

2. College of Engineering, Architecture and Fine Arts, Batangas State University: The National Engineering University Alangilan Campus, Batangas City, Batangas 4200, Philippines

3. Department of Obstetrics and Gynaecology, SRM Medical College, Hospital and Research Centre SRM Nagar, Potheri, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India

Abstract

The primary objective of this study is to segment the uterine fibroids (leiomyoma) from the ultrasound images of the uterus through semantic segmentation, followed by second-order statistical feature extraction using the Gray-level Co-occurrence Matrix (GLCM). The next objective of the study is to compare the performance of the state-of-the-art method namely Vision Transformer (ViT) with three different machine learning (ML) classifiers such as the Support Vector Machine (SVM), Logistic Regression (LR) and [Formula: see text]-Nearest Neighbor ([Formula: see text]-NN) to classify the images into uterine fibroid and normal. The dataset consists of 50 ultrasound images of uterine fibroids and 50 normal images. Then the images are segmented using region-growing-based semantic segmentation followed by feature extraction and classification using the ML and deep learning (DL) classifiers. Among the ML classifiers, SVM produced a good accuracy of 93.1% compared to the other classifiers. ViT produced an excellent classification accuracy of 97.5%. Hence, ViT outperformed compared to the ML classifiers in uterine fibroid detection. These findings have important implications for clinical practice, as they could help physicians to diagnose and treat uterine fibroids more effectively.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3