EFFECTS OF WRIST GUARD AND ELBOW ARREST STRATEGY ON IMPACT FORCE IN FORWARD FALLS

Author:

Lin Yan-Ren1,Chen Chiung-Ling23,Chen Yu-Chi4,Cho Min-Hsien5,Lou Shu-Zon23ORCID

Affiliation:

1. Department of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC

2. Department of Occupational Therapy, Chung Shan Medical University, Taichung, Taiwan, ROC

3. Occupational Therapy Room, Chung Shan, Medical University Hospital, Taichung, Taiwan, ROC

4. Department of Biomedical Engineering, HungKuang University, Shalu, Taichung, Taiwan, ROC

5. Industrial Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan, ROC

Abstract

Wrist guards are widely used for preventing distal radius fracture during in-line skating and snowboard-related activities. However, more than half of people wearing wrist guards nonetheless sustain a fracture of the wrist in forward falls. Accordingly, this study evaluates the effects of three factors, namely the wrist guard design, the fall height and the arrest strategy, on the impact force during a forward fall onto a single outstretched hand. Fifteen physically healthy male participants volunteered for the biomechanical investigation. None of the participants had a previous history of upper extremity injuries or disorders. A 1000[Formula: see text]Hz AMTI force plate was used to measure the ground reaction force (GRF) in forward falls performed using a self-built release system onto a single hand. The GRF and impact time were analyzed in terms of three factors, namely (1) the wrist guard design, including bare hand (BH), conventional wrist guard (WG), wrist guard pad on palm (WG+), and WG+ with no lower splint (WG[Formula: see text]; (2) the elbow arrest strategy, including elbow extended and elbow flexed; and (3) the fall height, including 4[Formula: see text]cm and 8[Formula: see text]cm. The impact force and loading rate significantly increased with an increasing fall height. However, the elbow flexed strategy attenuated the GRF peak force and delayed the point of peak impact force. The GRF in the WG, WG+ and WG− conditions was significantly lower than that in the BH condition. Overall, a lower fall height, a wrist guard with a compliant pad (WG+ or WG[Formula: see text], and an elbow flexed strategy reduced the impact force, delayed the peak impact force, and reduced the loading rate in forward falls.

Funder

Chung Shan Medical University and Changhua Christian Hospital for the financial support of this study

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3