HEURISTIC-ASSISTED ADAPTIVE HYBRID DEEP LEARNING MODEL WITH FEATURE SELECTION FOR EPILEPSY DETECTION USING EEG SIGNALS

Author:

Bhanja Nilankar1,Dhara Sanjib Kumar1,Khampariya Prabodh2

Affiliation:

1. Department of Electronics and Communication Engineering, Techno Engineering College Banipur, Banipur College Road, Banipur, Habra, West Bengal 743233, India

2. Electronics and Communication Engineering, Sri Satya Sai University of Technology and Medical Science, Opp. Oilfed Plant, Bhopal-Indore Road, Sehore Madhya Pradesh 466001, India

Abstract

The word epilepsy is related to a neurological disease occurred by abnormalities of brain neurons. Timely detection of epilepsy is helpful for patients to decrease the mortality rate. To detect seizures, the Encephalogram (EEG) signals are analyzed based on monitoring the conditions of patients, and seizures can be detected from the EEG signal at appropriate times. The manual detection from the EEG signal requires more time for detecting the seizures and also it needs domain knowledge. The miss detection is eliminated by improving the classification performance in automatic epilepsy detection. Nowadays, deep learning models have not been greatly harnessed in the detection of epileptic seizures due to inappropriate descriptions of time-domain signals and sub-optimal classifier design. The aforementioned issues are combated by the novel Adaptive Hybrid Deep Learning (AHDL) approaches for epilepsy detection using EEG signals. Initially, the required EEG signal is collected from benchmark datasets. The collected signals are subjected to a signal decomposition phase that is accomplished by five levels of decomposition using Dual-Tree Complex Wavelet Transform (DTCWT), where the parameters are tuned by Improved Probability-based Coyote Optimization Algorithm (IP-COA). Further, the decomposed signal is given for feature extraction, where it divides the signal into two phases. In the first phase, the first feature set is obtained by using One-Dimensional Convolutional Neural Network (1DCNN), whereas in the second phase, the proposed model utilizes Auto Encoder (AE) to provide the second feature set. These resultant features are getting fused and the optimal feature selection process is found, where the features are obtained optimally by the IP-COA. Finally, epilepsy detection is accomplished with the aid of proposed AHDL with both Radial Basis-Recurrent Neural Networks (RB-RNN), where the hyperparameters are optimized using IP-COA. Thus, the experimental results illustrate that the suggested model enhances the detection and classification rate.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3