Positive solutions to a Dirichlet problem with non-Lipschitz nonlinearities

Author:

Anello Giovanni

Abstract

Let \(Omega\) be a bounded smooth domain in \(R^N\). We study the existence of positive solutions to the Dirichlet problem $$\displaylines{ -\Delta u=(1-u)u^{s-1}-\lambda u^{r-1}, \quad\text{in } \Omega,\cr u=0, \quad \text{on } \partial\Omega,}$$ where \(1<;r<\leq 2\),  and \(\lambda>0\). In particular, we answer some questions posed in the recent paper [3] where this problem was considered. For more information see https://ejde.math.txstate.edu/Volumes/2021/30/abstr.html

Publisher

Texas State University

Subject

Analysis

Reference8 articles.

1. S. Agmon; The Lp approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 405-448.

2. G. Anello; Existence and multiplicity of nonnegative solutions for semilinear elliptic problems involving nonlinearities indefinite in sign, Nonlinear Anal., 75 (2012), 6103-6107.

3. V. Bobkov, P. Drabek, J. Hernandez; Existence and multiplicity results for a class of semi- linear elliptic equations, Nonlinear Analysis, 200, (2020), Article ID 112017, 24 p.

4. H. Brezis, L. Nirenberg; H1 versus C1 local minimizers, C. R. Acad. Sci. Paris Ser. I Math., 317(5) (1993), 465-472.

5. D. Gilbarg, N. S. Trudinger; Elliptic partial differential equations of second order, Springer, Berlin Heidelberg, 1998.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Double phase equations with an indefinite concave term;Electronic Journal of Differential Equations;2022-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3