Abstract
Let \(Omega\) be a bounded smooth domain in \(R^N\). We study the existence of positive solutions to the Dirichlet problem $$\displaylines{ -\Delta u=(1-u)u^{s-1}-\lambda u^{r-1}, \quad\text{in } \Omega,\cr u=0, \quad \text{on } \partial\Omega,}$$ where \(1<;r<\leq 2\), and \(\lambda>0\). In particular, we answer some questions posed in the recent paper [3] where this problem was considered.
For more information see https://ejde.math.txstate.edu/Volumes/2021/30/abstr.html
Reference8 articles.
1. S. Agmon; The Lp approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 405-448.
2. G. Anello; Existence and multiplicity of nonnegative solutions for semilinear elliptic problems involving nonlinearities indefinite in sign, Nonlinear Anal., 75 (2012), 6103-6107.
3. V. Bobkov, P. Drabek, J. Hernandez; Existence and multiplicity results for a class of semi- linear elliptic equations, Nonlinear Analysis, 200, (2020), Article ID 112017, 24 p.
4. H. Brezis, L. Nirenberg; H1 versus C1 local minimizers, C. R. Acad. Sci. Paris Ser. I Math., 317(5) (1993), 465-472.
5. D. Gilbarg, N. S. Trudinger; Elliptic partial differential equations of second order, Springer, Berlin Heidelberg, 1998.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Double phase equations with an indefinite concave term;Electronic Journal of Differential Equations;2022-07-28