Hypoxia – as a Possible Regulator of the Activity of Epicardial Mesothelial Cells After Myocardial Infarction

Author:

Dergilev K. V.1,Tsokolaeva Z. I.2,Vasilets Yu. D.1,Beloglazova I. B.1,Kulbitsky B. N.3,Parfyonova Ye. V.4

Affiliation:

1. Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow

2. Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow; V. A. Negovsky Research Institute of General Reanimatology, Moscow

3. Hospital for War Veterans №3 of the Moscow City Health Department, Moscow

4. Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow; Moscow State University, Faculty of Basic Medicine, Laboratory of Postgenomic Technologies in Medicine, Moscow

Abstract

Aim      To study the effect of hypoxia on the activity of epithelial-mesenchymal transition (EMT) in epicardial cells, which provides formation of a specialized microenvironment.Material and methods   This study used a model of experimental myocardial infarction created by ligation of the anterior descendent coronary artery. The activity of epicardial cells after a hypoxic exposure was studied with the hypoxia marker, pimonidazole, bromodeoxyuridine, immunofluorescent staining of heart cryosections, and in vitro mesothelial cell culture.Results The undamaged heart maintained the quiescent condition of mesothelial cells and low levels of their proliferation, extracellular matrix protein production, and of the EMT activity. Acute ischemic injury induced moderate hypoxia in the epicardial/subepicardial region. This caused a global rearrangement of this region due to the initiation of EMT in cells, changes in the cell composition, and accumulation of extracellular matrix proteins. We found that the initiation of EMT in mesothelial cells may result in the formation of smooth muscle cell precursors, fibroblasts, and a population of Sca-1+ cardiac progenitor cells, which may both participate in construction of new blood vessels and serve as a mesenchymal link for the paracrine support of microenvironmental cells. In in vitro experiments, we showed that 72‑h hypoxia facilitated activation of EMT regulatory genes, induced dissembling of intercellular contacts, cell uncoupling, and increased cell plasticity.Conclusion      The epicardium of an adult heart serves as a “reparative reserve” that can be reactivated by a hypoxic exposure. This creates a basis for an approach to influence the epicardium to modulate its activity for regulating reparative processes.

Publisher

APO Society of Specialists in Heart Failure

Subject

Cardiology and Cardiovascular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3