A Type‐Curve Approach for Evaluating Aquifer Properties by Interpreting Shallow Strain Measured During Well Tests

Author:

Murdoch Lawrence C.1ORCID,Germanovich Leonid N.1ORCID,Roudini Soheil1ORCID,DeWolf Scott J.1ORCID,Hua Liwei1ORCID,Moak Robert W.1ORCID

Affiliation:

1. Environmental Engineering and Earth Science Department Clemson University Clemson SC USA

Abstract

AbstractStrains occur at shallow depths in response to pressure changes during well tests in an underlying aquifer, and recent developments in instrumentation have made it feasible to measure essentially the full strain tensor. Simulations using poroelastic analyses indicate that shallow normal strains are approximately proportional to the logarithm of time when a well is injecting into or pumping from a deep aquifer or reservoir. The drawdown is also a linear function of log time, as shown by the classic Cooper‐Jacob type‐curve analysis. The time when the semilog straight line intercepts the zero‐strain axis is similar to the time determined from the Cooper‐Jacob pressure analysis, and it can be used to estimate hydraulic diffusivity, suggesting that horizontal strain data can be used directly to estimate aquifer properties. This approach was validated using measurements from shallow (30‐m deep) borehole strainmeters during an injection test at a 530‐m‐deep sandstone aquifer/reservoir in Oklahoma. The results show intercept times for the shallow normal strain data are essentially the same as for deep pressure data from an equivalent radial distance. The slopes of the semilog plots of the pressure and the strain increase at the same time, suggesting that they both respond to a lateral aquifer boundary. Significantly, though, strain was measured at shallow depths while the pressure data were measured at 530‐m depth. This suggests that strain data from shallow depths could be an effective way to improve the characterization of an underlying aquifer.

Funder

Office of Clean Coal and Carbon Management

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3