Affiliation:
1. Environmental Engineering and Earth Science Department Clemson University Clemson SC USA
Abstract
AbstractStrains occur at shallow depths in response to pressure changes during well tests in an underlying aquifer, and recent developments in instrumentation have made it feasible to measure essentially the full strain tensor. Simulations using poroelastic analyses indicate that shallow normal strains are approximately proportional to the logarithm of time when a well is injecting into or pumping from a deep aquifer or reservoir. The drawdown is also a linear function of log time, as shown by the classic Cooper‐Jacob type‐curve analysis. The time when the semilog straight line intercepts the zero‐strain axis is similar to the time determined from the Cooper‐Jacob pressure analysis, and it can be used to estimate hydraulic diffusivity, suggesting that horizontal strain data can be used directly to estimate aquifer properties. This approach was validated using measurements from shallow (30‐m deep) borehole strainmeters during an injection test at a 530‐m‐deep sandstone aquifer/reservoir in Oklahoma. The results show intercept times for the shallow normal strain data are essentially the same as for deep pressure data from an equivalent radial distance. The slopes of the semilog plots of the pressure and the strain increase at the same time, suggesting that they both respond to a lateral aquifer boundary. Significantly, though, strain was measured at shallow depths while the pressure data were measured at 530‐m depth. This suggests that strain data from shallow depths could be an effective way to improve the characterization of an underlying aquifer.
Funder
Office of Clean Coal and Carbon Management
Publisher
American Geophysical Union (AGU)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献