Multi‐Source Perturbations in the Evolution of a Low‐Latitudinal Equatorial Plasma Bubble Event Occurred Over China

Author:

Sun Longchang12ORCID,Xu Jiyao123ORCID,Zhu Yajun123ORCID,Yuan Wei12ORCID,Gao Hong123ORCID,Yan Chunxiao12ORCID

Affiliation:

1. State Key Laboratory of Space Weather National Space Science Center Chinese Academy of Sciences Beijing China

2. Hainan National Field Science Observation and Research Observatory for Space Weather National Space Science Center Chinese Academy of Sciences Beijing China

3. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractIn this paper, multi‐source perturbations during the evolution of an equatorial plasma bubble (EPB) event at low latitudes in China are studied by means of multi‐ground‐based instruments, including an all‐sky airglow imager, a very high frequency (VHF) radar and eight digisondes. We found that EPB event initially evolved from bottom perturbations (∼600 km scale) seeded by atmospheric gravity waves in a form of large‐scale wave‐like structure, accompanying smaller‐scale perturbations (∼150 km scale) mostly by collision‐shear instability (CSI); once formed, those seed perturbations further evolved into the ionospheric topside by the plasma instability. Observed and analyzed are two different instabilities: one is the Rayleigh‐Taylor instability (RTI) driven by a prereversal enhancement of the zonal electric field (PRE) occurred near sunset; the other is an equatorward wind‐induced secondary E × B gradient drift instability (GDI) around midnight. Accompanying the PRE‐induced RTI are freshly‐generated depletions with larger poleward (upward) velocities. The PRE‐driven RTI could elevate the bottom perturbations directly to form fast‐moving depletions/structures at the ionospheric topside. The E × B GDI was trigged by a vertical upward plasma jet caused by a seasonal equatorward wind in regions as far as 10°N (20°N) from the geomagnetic (geographic) equator. This equatorward wind‐induced E × B GDI continuously forced topside structures of those drifting‐type EPB depletions to extend poleward more slowly, resulting in active 3.2‐m irregularities around midnight. Besides, we present evidence that a westward polarization electric field generated in an adjacent trough region of the faster‐growing cluster‐type depletions inhibited the neighboring slower‐growing cluster‐type depletions.

Funder

Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Key Research and Development Program of China

Chinese Academy of Sciences

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3