Physical Mechanisms Driving Enhanced Carbon Sequestration by the Biological Pump Under Climate Warming

Author:

Dunne J. P.1ORCID

Affiliation:

1. NOAA/OAR Geophysical Fluid Dynamics Laboratory Princeton NJ USA

Abstract

AbstractAs ocean Carbon Dioxide Removal techniques are being considered, it is critical that they be evaluated against our scientific understanding of the global biological carbon pump. In a recent paper Nowicki et al. (2022, https://doi.org/10.1029/2021GB007083) provide an innovative and comprehensive breakdown of the different mechanistic pathways of carbon sequestration through the present‐day biological pump but then speculate that “These results suggest that ocean carbon storage will weaken as the oceans stratify and the subtropical gyres expand due to anthropogenic climate change.” Essentially, the authors combine their steady state result that oligotrophic subtropical gyres have lower residence times than other areas with the climate change result of these areas increasing under climate warming and extrapolate—assuming “all else is equal”—that the overall ocean will suffer a reduction in carbon sequestration efficiency. Expressing global changes in carbon sequestered by the ocean's biological pump as the summation of local changes in the sequestered carbon, timescale of return to the surface, and biogeographical area, I discuss how all three terms are tightly coupled, and summarize decades of climate change modeling consistently indicating that the global scale physical sequestration response is an increase ‐ in opposition of what one would infer from changes in subtropical area alone.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3