Comparing Different Tropopause Estimates From High‐Resolution Ozonesondes

Author:

Connolly Michael12,Dingley Orla3,Connolly Ronan12ORCID,Soon Willie24

Affiliation:

1. Independent Scientist Dublin Ireland

2. Center for Environmental Research and Earth Sciences (CERES) Salem MA USA

3. University College Dublin Belfield Ireland

4. Institute of Earth Physics and Space Science (ELKH EPSS) Sopron Hungary

Abstract

AbstractSince the tropopause was first identified, the quality and resolution of weather balloons has dramatically improved. NOAA Earth System Research Laboratories (ESRL) have provided high resolution and very high quality ozonesondes from eight locations: Fiji; American Samoa; Greenland; Antarctica; and several locations in USA (Hawai'i, Colorado, California and Alabama). These locations collectively cover polar regions, mid‐latitudes and tropics. Using this publicly archived data set, we studied the variability of the tropopause for all eight locations for one complete year (2016). Along with the standard estimates of the tropopause provided by NOAA ESRL, we developed four alternative tropopause definitions each based on changes in one of the following: (a) molar density; (b) temperature lapse rates; (c) water vapor content; (d) ozone content. These old and new tropopause definitions appear to hold over all eight locations—for all seasons and from the tropics to the poles. The cohesiveness between all five of these independent tropopause definitions is remarkable, although the NOAA ESRL estimates sometimes identify higher tropopause onsets than the other estimates. Therefore, each tropopause definition could potentially be used as proxies for other tropopause definitions. However, it also confirms that the troposphere/tropopause transition is a multi‐faceted physical and chemical phenomenon associated with more than just temperature changes. Finally, these high‐resolution results suggest that the original term “tropopause” might be a misnomer since they suggest increases in temperature lapse rate variability, rather than the “pausing” implied by lower resolution data or by lapse rates that are averaged over large distances.

Publisher

American Geophysical Union (AGU)

Reference51 articles.

1. A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere

2. Fine-scale structure of the extratropical tropopause region

3. How sharp is the tropopause at midlatitudes?

4. The physics of the Earth’s atmosphere I. Phase change associated with tropopause;Connolly M.;Open Peer Review Journal,2014

5. The physics of the Earth’s atmosphere II. Multimerization of atmospheric gases above the troposphere;Connolly M.;Open Peer Review Journal,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3