A Parameterization for Cloud Organization and Propagation by Evaporation‐Driven Cold Pool Edges

Author:

Freitas Saulo R.1ORCID,Grell Georg A.2,Chovert Angel D.3,Silva Dias Maria Assunção F.4ORCID,de Lima Nascimento Ernani5

Affiliation:

1. National Institute for Space Research (INPE) São José dos Campos Brazil

2. Earth System Research Laboratory NOAA Boulder CO USA

3. Center for Environmental Studies, Monitoring and Prediction (CEMPA) Federal University of Goiás Goiânia Brazil

4. University of São Paulo São Paulo Brazil

5. Federal University of Santa Maria Santa Maria Brazil

Abstract

AbstractWhen the negatively buoyant air in the cloud downdrafts reaches the surface, it spreads out horizontally, producing cold pools. A cold pool can trigger new convective cells. However, when combined with the ambient vertical wind shear, it can also connect and upscale them into large mesoscale convective systems (MCS). Given the broad spectrum of scales of the atmospheric phenomenon involving the interaction between cold pools and the MCS, a parameterization was designed here. Then, it is coupled with a classical convection parameterization to be applied in an atmospheric model with an insufficient spatial resolution to explicitly resolve convection and the sub‐cloud layer. A new scalar quantity related to the deficit of moist static energy detrained by the downdrafts mass flux is proposed. This quantity is subject to grid‐scale advection, mixing, and a sink term representing dissipation processes. The model is then applied to simulate moist convection development over a large portion of tropical land in the Amazon Basin in a wet and dry‐to‐wet 10‐days period. Our results show that the cold pool edge parameterization improves the organization, longevity, propagation, and severity of simulated MCS over the Amazon and other different continental areas.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de Goiás

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3