Enhancing Urban Climate‐Energy Modeling in the Community Earth System Model (CESM) Through Explicit Representation of Urban Air‐Conditioning Adoption

Author:

Li Xinchang “Cathy”1ORCID,Zhao Lei123ORCID,Oleson Keith4ORCID,Zhou Yuyu5,Qin Yue6,Zhang Keer7,Fang Bowen1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of Illinois Urbana‐Champaign Urbana IL USA

2. Institute for Sustainability, Energy, and Environment (iSEE) University of Illinois Urbana‐Champaign Urbana IL USA

3. National Center for Supercomputing Applications University of Illinois Urbana‐Champaign Urbana IL USA

4. National Center for Atmospheric Research Boulder CO USA

5. Department of Geography and Urban Systems Institute The University of Hong Kong Hong Kong China

6. College of Environmental Science and Engineering Peking University Beijing China

7. School of the Environment Yale University New Haven CT USA

Abstract

AbstractImproved representation of urban processes in Earth System Models (ESMs) is a pressing need for climate modeling and climate‐driven urban energy studies. Despite recent improvements to its fully coupled Building Energy Model (BEM), the current Community Land Model Urban (CLMU) in the Community Earth System Model (CESM) lacks the infrastructure to model air‐conditioning (AC) adoption explicitly. This undermines CESM's fidelity in modeling urban climate and energy use, and limits its use in climate and energy risk assessments. Here, we establish a new parameterization scheme in CESM that represents AC adoption explicitly through an AC adoption rate parameter in the BEM of CLMU, and build a present‐day, global, survey‐based, and spatially explicit AC adoption rate data set at country and sub‐country level that is integrated within CESM. The new data set can be leveraged for other ESMs or global‐scale models and analyses. The explicit AC adoption scheme and the AC adoption rate data set significantly improve the accuracy of anthropogenic heat modeling due to AC in CESM. The new parameterization scheme makes it possible to evaluate the effects of changing AC adoption on global urban energy and climate using CESM. These developments enhance CESM in its use for climate impact assessments under future climate and socioeconomic development scenarios, and represent continued efforts in better representing urban processes and coupled human‐urban‐Earth dynamics in ESMs.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3