Spatio‐Temporal Machine Learning for Regional to Continental Scale Terrestrial Hydrology

Author:

Bennett Andrew1ORCID,Tran Hoang2ORCID,De la Fuente Luis1ORCID,Triplett Amanda1,Ma Yueling34ORCID,Melchior Peter56ORCID,Maxwell Reed M.34ORCID,Condon Laura E.1ORCID

Affiliation:

1. Department of Hydrology and Atmospheric Sciences University of Arizona Tucson AZ USA

2. Atmospheric Science & Global Change Division Pacific Northwest National Laboratory Richland WA USA

3. Department of Civil and Environmental Engineering Princeton University Princeton NJ USA

4. High Meadows Environmental Institute, Princeton University Princeton NJ USA

5. Department of Astrophysical Sciences Princeton University Princeton NJ USA

6. Center for Statistics and Machine Learning Princeton University Princeton NJ USA

Abstract

AbstractIntegrated hydrologic models can simulate coupled surface and subsurface processes but are computationally expensive to run at high resolutions over large domains. Here we develop a novel deep learning model to emulate subsurface flows simulated by the integrated ParFlow‐CLM model across the contiguous US. We compare convolutional neural networks like ResNet and UNet run autoregressively against our novel architecture called the Forced SpatioTemporal RNN (FSTR). The FSTR model incorporates separate encoding of initial conditions, static parameters, and meteorological forcings, which are fused in a recurrent loop to produce spatiotemporal predictions of groundwater. We evaluate the model architectures on their ability to reproduce 4D pressure heads, water table depths, and surface soil moisture over the contiguous US at 1 km resolution and daily time steps over the course of a full water year. The FSTR model shows superior performance to the baseline models, producing stable simulations that capture both seasonal and event‐scale dynamics across a wide array of hydroclimatic regimes. The emulators provide over 1,000× speedup compared to the original physical model, which will enable new capabilities like uncertainty quantification and data assimilation for integrated hydrologic modeling that were not previously possible. Our results demonstrate the promise of using specialized deep learning architectures like FSTR for emulating complex process‐based models without sacrificing fidelity.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3