Urbanization and Water Management Control Stream Water Quality Along a Mountain to Plains Transition

Author:

Murphy S. F.1ORCID,Runkel R. L.2ORCID,Stets E. G.3ORCID,Nolan A. J.1,Repert D. A.1ORCID

Affiliation:

1. U.S. Geological Survey Water Resources Mission Area Boulder CO USA

2. U.S. Geological Survey Colorado Water Science Center Boulder CO USA

3. U.S. Geological Survey Water Resources Mission Area Mounds View MN USA

Abstract

AbstractUrbanization can have substantial effects on water quality due to altered hydrology and introduction of constituents to water bodies. In arid and semi‐arid environments, streams are further stressed by dewatering as a result of diversions. We conducted a high‐resolution synoptic survey of two streams in Colorado, USA that transition abruptly from granitic/metamorphic forested mountains to sedimentary urbanized plains and are both highly managed for water supply, yet differ in degree of urbanization. A synoptic mass balance approach developed for mine drainage applications was adapted to elucidate effects of urbanization, geology, and diversions on stream chemistry during baseflow conditions. Urbanization was a more important driver of stream concentrations than geology. The urban area was a strong source of bromide, calcium, chloride, and manganese, while lanthanum and dissolved organic carbon were primarily sourced from the mountains. A majority of streamflow was removed by diversions near the mountains/plains interface. Groundwater accounted for 31% of the subsequent flow increase to the urbanized stream, and delivered at least 33% of chloride loading. Constituents that were primarily urban‐derived (bromide, calcium, chloride, and manganese) were 2–3 times higher in the urban region due to diversions; without diversions, stream water quality would have largely retained characteristics of forested streams through the urban reach. This study provides insights into processes that affect water quality in highly managed streams of the semi‐arid western USA.

Funder

U.S. Geological Survey

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3