Mesospheric Water Vapor in 2022

Author:

Nedoluha Gerald E.1ORCID,Gomez R. Michael1,Boyd Ian2ORCID,Neal Helen2,Allen Douglas R.1ORCID,Lambert Alyn3ORCID,Livesey Nathaniel J.3ORCID

Affiliation:

1. Naval Research Laboratory Washington DC USA

2. Bryan Scientific Consulting LLC Charlottesville VA USA

3. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractThe eruption of the Hunga Tonga undersea volcano in January 2022 injected water vapor to altitudes as high as 53 km, but also an unprecedented and much larger amount of water vapor into the stratosphere. Several months after the eruption, measurements from the Aura Microwave Limb Sounder (MLS) and from three ground‐based Water Vapor Millimeter Wave Spectrometer instruments began to measure record‐high amounts of water vapor in the mesosphere over a wide range of latitudes. While there are indications that some of this mesospheric increase in water vapor was probably caused by the Hunga Tonga eruption, variations in water vapor mixing ratios also depend on dynamical factors. The phase of the QBO in 2015 was similar to that in 2022, and we make use of this similarity in order to better understand what role dynamics played in establishing the unusually large 2022 water vapor mixing ratios, both in the upper and lower mesosphere.

Funder

Earth Sciences Division

Office of Naval Research

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3