Affiliation:
1. Naval Research Laboratory Washington DC USA
2. Bryan Scientific Consulting LLC Charlottesville VA USA
3. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
Abstract
AbstractThe eruption of the Hunga Tonga undersea volcano in January 2022 injected water vapor to altitudes as high as 53 km, but also an unprecedented and much larger amount of water vapor into the stratosphere. Several months after the eruption, measurements from the Aura Microwave Limb Sounder (MLS) and from three ground‐based Water Vapor Millimeter Wave Spectrometer instruments began to measure record‐high amounts of water vapor in the mesosphere over a wide range of latitudes. While there are indications that some of this mesospheric increase in water vapor was probably caused by the Hunga Tonga eruption, variations in water vapor mixing ratios also depend on dynamical factors. The phase of the QBO in 2015 was similar to that in 2022, and we make use of this similarity in order to better understand what role dynamics played in establishing the unusually large 2022 water vapor mixing ratios, both in the upper and lower mesosphere.
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献