The Relationship Between the Saharan Air Layer, Convective Environmental Conditions, and Precipitation in Puerto Rico

Author:

Miller P. W.12ORCID,Ramseyer C.3ORCID

Affiliation:

1. Department of Oceanography and Coastal Sciences Louisiana State University Baton Rouge LA USA

2. Coastal Studies Institute Louisiana State University Baton Rouge LA USA

3. Department of Geography Virginia Tech Blacksburg VA USA

Abstract

AbstractThe Saharan Air Layer (SAL) is a hot, dry, and dust‐laden feature that advects large concentrations of dust across the Atlantic annually to destination regions in the Americas and Caribbean. However, recent work has suggested the SAL may be a contributing factor to high‐impact drought in the Caribbean basin. While the SAL's characteristic dust loadings have been the focus of much previous research, fewer efforts have holistically engaged the co‐evolution of the dust plume, its associated convective environment, and resultant rainfall in Caribbean islands. This study employs a self‐organizing map (SOM) classification to identify the common trans‐Atlantic dust transport typologies associated with the SAL during June and July 1981–2020. Using the column‐integrated dust flux, termed integrated dust transport (IDT), from MERRA‐2 reanalysis as a SAL proxy, the SOM resolved two common patterns which resembled trans‐Atlantic SAL outbreaks. During these events, the convective environment associated with the SAL, as inferred by the Gálvez‐Davison Index, becomes less conducive to precipitation as the SAL migrates further away from the west African coast. Simultaneously, days with IDT patterns grouped to the SAL outbreak typologies demonstrate island‐wide negative precipitation anomalies in Puerto Rico. The SOM's most distinctive SAL outbreak pattern has experienced a statistically significant increase during the 40‐year study period, becoming roughly 10% more frequent over that time. These results are relevant for both climate scientists and water managers wishing to better anticipate Caribbean droughts on both the long and short terms.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3