The Precipitation Characteristics of Mesoscale Convective Systems Over Europe

Author:

Da Silva Nicolas A.1ORCID,Haerter Jan O.123

Affiliation:

1. Leibniz Centre for Tropical Marine Research Complexity and Climate Bremen Germany

2. Physics and Earth Sciences Constructor University Bremen Bremen Germany

3. Niels Bohr Institute University of Copenhagen Copenhagen Denmark

Abstract

AbstractMesoscale convective systems (MCSs) are common over Europe and can produce severe weather, including extreme precipitation that leads to flash floods. The few studies analyzing the climatological characteristics of MCSs over Europe are either focusing on only few years of data or on limited subareas. Using the recent Integrated MultisatellitE Retrievals for Global Precipitation Measurement (IMERG) satellite precipitation climatology, we identify and track MCSs for 16 years over Europe. The tracking algorithm relies on the overlap of precipitation features between consecutive time steps and, unlike previous studies, uses lightning data to distinguish convective from stratiform rain patches, which can reduce potential identification errors. We analyze this new European MCS climatology to characterize MCS precipitation properties and conclude the following results: MCSs overall occur most frequently over the Mediterranean and Atlantic during fall and winter, whereas during summer, they concentrate over the continent. Typically, more than a third of seasonal precipitation can be attributed to MCSs, and their contribution to extreme precipitation is even greater, often exceeding 60%. MCSs over the continent display a clear diurnal cycle peak during the afternoon, and some continental areas also show a second, nocturnal peak. The MCS diurnal cycle for coastal and oceanic regions is more variable. We find that the spatiotemporal distribution of MCS precipitation can be attributed to specific environmental variables, namely (sea) surface temperature, fronts occurrence and convective instability. While inland MCS precipitation is mostly constrained by thermodynamics, for the coastal MCSs the atmospheric dynamics plays an important role as well.

Funder

H2020 European Research Council

VILLUM Fonden

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3