Process‐Based Intercomparison of Water Isotope‐Enabled Models and Reanalysis Nudging Effects

Author:

Bong Hayoung1ORCID,Cauquoin Alexandre1ORCID,Okazaki Atsushi2ORCID,Chang Eun‐Chul3ORCID,Werner Martin4ORCID,Wei Zhongwang5ORCID,Yeo Namgu3ORCID,Yoshimura Kei16ORCID

Affiliation:

1. Institute of Industrial Science The University of Tokyo Kashiwa Japan

2. Department of Global Environment and Disaster Prevention Sciences Hirosaki University Hirosaki Japan

3. Department of Atmospheric Science Kongju National University Kongju South Korea

4. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Sciences Bremerhaven Germany

5. School of Atmospheric Sciences Sun Yat‐sen University Guangzhou China

6. Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa Japan

Abstract

AbstractThe products from the Stable Water Isotope Intercomparison Group, Phase 2, are currently used for numerous studies, allowing water isotope model‐data comparisons with various isotope‐enabled atmospheric general circulation model (AGCMs) outputs. However, the simulations under this framework were performed using different parameterizations and forcings. Therefore, a uniform experimental design with state‐of‐the‐art AGCMs is required to interpret isotope observations rigorously. Here, we evaluate the outputs from three isotope‐enabled numerical models nudged by three different reanalysis products and investigate the ability of the isotope‐enabled AGCMs to reproduce the spatial and temporal patterns of water isotopic composition observed at the surface and in the atmospheric airborne water. Through correlation analyses at various spatial and temporal scales, we found that the model's performance depends on the model or reanalysis we use, the observations we compare, and the vertical levels we select. Moreover, we employed the stable isotope mass balance method to conduct decomposition analyses on the ratio of isotopic changes in the atmosphere. Our goal was to elucidate the spread in simulated atmospheric column δ18O, which is influenced by factors such as evaporation, precipitation, and horizontal moisture flux. Satisfying the law of conservation of water isotopes, this budget method is expected to explain various fractionation phenomena in atmospheric meteorological and climatic events. It also aims to highlight the spreads in modeled isotope results among different experiments using multiple models and reanalyses, which are primarily dominated by uncertainties in moisture flux and precipitation, respectively.

Funder

JST-Mirai Program

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3